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Abstract

An approximate method for calculating the noise generated by a.

turbulent flow within a semi-infinite duct of arbitrary cross section

is developed. It is based on a previously derived high-frequency so-

lution to Lilley's equation, which describes the sound propagation in

a transversely-sheared mean flow. The source term is simplified by

assuming the turbulence to be axisymmetric about the mean flow

direction. Numerical results are presented for the special case of a

ring source in a circular duct. with an axisymmetric mean flow. They

show that the internally generated noise is suppressed at. sufficiently

large upstream angles in a hard walled duct, and that acoustic liners

can significantly reduce the sound radiated in both the upstream and

downstream regions, depending upon the source location and Mach

number of the flow.

1 Introduction

(:onsiderable effort has been invested in developing a new generation of su-

personic transports. One of the primary requirements was that the a.h'craf!

be quiet enough to meet or even exceed existing noise regulations, and it was
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decided that a mixer-ejector nozzle concept would be used to help accom-

plish this objective. The idea was that a significant amount of the mixing

noise would be generated internally within the nozzle, and could therefore

be considerably reduced by using suitable acoustic liner designs. Data from

recent lests using a prototype mixer-ejector show that the peak internal tur-

5ulence level is more than twice the external level. It is therefore important

to develop prediction methods for this internally generated noise. A general

theory based on Lighthill's equation was developed by Goldstein and Rosen-

baum [1]. Dill, Oyediran and Krejsa [2] extended this analysis to account for

mean-flow refraction effects. However, both theories involve the solution of a

complica.ted Weiner-Hopf problem, which can only be explicitly worked out

for a slug ( or "top hat.') mean velocity profile.

The experimental data suggest that the internal noise is of much higher

frequency than the externally generated noise, in addition to being much

more sensitive to nozzle geometry. Moreover. many of the most successful

noise prediction schemes ( e.g. the MGB code, ref. [3]) are based on high-

frequency Lilley's-equation solutions (ref. [4]). The present study is therefore

directed towar(l developing a high-fl'equency Lilley's-equation solution lhat

can be used to predict the internally generated noise. We suppose that the
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soundis generatedby a superpositionof statistically independentand a.cous-

tically compact, convecting-pointquadruplesand derive a formula for the

high-frequencyacoustic radiation generatedby suchsonrceswhen they are

locatedwithin asemi-infinite, parallel-wallednozzle.In fact, wesupposethat

the meanflow is completelyparallel, but allow the cross-sectionalshapeand

velocity profile to be arbitrary (asshownin Figure la.), in order to account

for nozzle-geometryeffects.The only variation in the streamwisedirection is

due to the boundary condition changeat the nozzleexit, which is allowedto

havean arbitrary shape. Finally, an arbitrary (frequencydependent)acous-

tic impedanceboundary condition is imposedat the nozzlewalls,in order to

model an acoustically, treated surface. The resulting solutions can then be

superimposed to calculate the sound generated by an actual turbulent flow

within a nozzle. The analysis can be used to guide the design of acoustic

liners that may be required to absorb the noise radiated in specific directions

or to design nozzle exit shapes that reduce the noise radiation below the

flight path.

Goldstein [5] developed a fornmla (equation (5.9) of th a.t reference) for the

high-Dequency sound radiation from a convecting-point quadruple source in

an arbitrary, transversely sheared mean flow. This result was later extended
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by Durbin [6] to account for a general(not necessarilyparallel) mean flow.

These formulas involve a ray-spreadingfactor that multiplies the product

of a sourcefunction-which describesthe actual acousticsources-withsome

Doppler factors that accountfor the local sourceand meanflow convection

effects.The spreadingfactor accountsfor the mean-flowvariation along the

path of tile radiated soundand can be calculatedfi'om geometricacoustics

or ray tracing.

The presentpaper showsthat Goldstein's[5] formula still applies to the

internally-generatednoise and that only the ray-tracing analysiswhich is

usedto calculate the ray-spreading factor needs to be modified in order to

account for the effect of the nozzle walls. This is demonstrated in Section

2, where the notation is introduced and the Goldstein [5] and Durbin [6]

analyses are reviewed in some detail.

Three-dimensional ray tracing is fairly complex and somewhat difficult

to implement numerically, but it was shown in Ref. [5] that the three-

dimensional ray-tracing calculation could be reduced to a much simpler two-

dimensional one for the doubly-infinite jet flow considered in that paper. The

rays can then be found by solving a single second-order equation. In section

3 we show that this can also be done in the present problem. The results
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are applied to an actual turbulent flow in Section 4 and specialized to an

axisymmetric mean flow in a. round duct with circular exit plane in Section

,5, where some numerical results axe also presented. Some conclusions and

recommenda.tions for further work are given in Section 6.

2 Extension of Doubly Infinite Jet Solution

to Account for Finite Nozzle Geometry

For definiteness, we consider a unidirectional, transversely-sheared, parallel

rllea,n flow

V = {U(Xt), p = p(xt), c = c(xt), p = constant, (1)

with velocity v, density p, speed of sound c, and pressure p, exiting from a,

parallel-walled nozzle, as shown ill Figure l-a.. The result which we ol)tain.

however, is much more general and applies to more complicated flow configu-

rations such as the one shown in Figure 1-b. Equation (1) is a.n exact solution

of the inviscid, non-heat-conducting equations of motion for these configura-

tions, x = {xi, at2, .ra} denote Cartesian coordinates with :rj aligned with the

direction of the mean flow, _ denotes the unit vector in this direction, and

xt = {.r2, x:_} denotes tile transverse coordinate vector. The nozzle exit is
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described by an arbitrary, three-dimensional curve C, as shown in the figure.

The mean velocity l _ is assumed to go smoothly to zero at the generators of

the nozzle wall and to remain zero beyond that. surface. Tile analysis does

not therefore account for forward flight, effects, but can easily be extended to

do SO.

Assuming that the ideal gas law applies, tile linearized equation governing

the acoustic propagation oll this flow is [8]

D ( D2p V.d2Vp) +2O2VIT.vOP =F, (2)12p _ D--7 Dt---V .... &.---[:

where p now denotes the acoustic pressure fluctuation normalized by fie 2,

D 0 0
- + 1;-- (a)

Dt - Ot Oxl'

denotes the convective derivative, and t denotes the time. F represents the

acoustic source distribution and is given by

D Of
r = --V.f-2V_'.-- (4)

Dt t)a'l _

when this quantity is produced by a fluctuating force fi per unit volume.

In the absence of temperature fluctuations, Lilley's equation is obtained by

replacing .fl by the quadruple source distribution fi - _ where ui denotes
;tar 2 •

the velocity fluctuation within the flow.
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Sincethe problem is linear, and tile secondterm ill (4) is negligible con>

pared to the first, in the high-frequencylimit, the solution for an arbitrary

force distribution fi can be obtained by superposition of solutions, say pc,,

to

/ e-i_t'l D
£ kpc, ) = /-_5(x - xS)e -i'_t, (5)

where _, is the frequency, x "_denotes the source position, and _ is the I)irac

delta function.

2.1 Review of Durbin's high-frequency solution

By using matched a.symptotic expansions, Durbin [6] showed that the solu-

tion to this problem is given by

PG = Pc.(XIX_, _') = (1 -- M._j)+e i_'/, (6)

in the high-frequency limit

/,,= _.,/c._, -+ oc, (7)

where c.>:_is the speed of sound in the region of zero mean flow.

M _ lr/a<. (8)
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S denotes tile Eikenal, which satisfies the Eikenal equation

(I-lids1) 2 ((?)2- _ I_l_ = 0, (._)

and

$ -_- {51, _2_ 83} _ _7 ¢,'. (10)

The solution to this first-order partial differential equation can be ob-

tained bv the method of characteristics by calculating ,q' along the rays x(r)

. which are determined by the ordinary differential equations

_1 ---- O, (11)

21 = sl 1 - + t?--T-' (12)

/

/•
i = 2,3, (13)

subject to the initial conditions at the source position x _ that the initial ray

velocity is i)roportional to tile initial ray direction, say {cos ii, sin/z cos ,_, sin t _sin )_},

i.e. that

x_ = % {cos t_, sin It cos )_, sin/1 sin k}, (14)

where r is a parameter that varies continuously along the ray, the dot denotes

differentiation with respect t.o r, the subscript ._ denotes quantities evaluated

at the source l)osilion x _, and the 1)roportionality constant % is given by
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(15)

Tile amplitude function _ is given t) 3,

¢ ----4,-roe.,:.(1 -M,._)V p._.] ' (16)

where J denotes the Jacobian det.erminant

J=
O(*,,,,,2,*a)

O(c,, _, ,_)
(17)

with dcr = Idxl denoting the distance along the ray.

Once these equations are solved, the Eikenal can be found by integrating

the equation

_¢'= s. _, (is)

and the velocity fluctuation UG, corresponding to the acoustic pressure per-

turbation pc;, can be calculated from

Ua = gas_eia'S/c._. (19)
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The important thing to notice is that the derivation of theseresults is

c()mpletelyindependentof any 1)oundaryconditionsthat are imposedon the

surfaceE of the duct, and the termination curve C of the duct exit. The

latter gives rise to the so-called defracted radiation which (Pierce [9]) is of

higher order in fl'equency than the direct, and reflected radiation and can

therefore legitimately be neglected in the high-frequency limit-though it can

certainly be important in the upstream direction.

2.2 Modification of solution to account for the duct

walls

The conditions at the surface of the duct are accounted for t)y imposing

boundary conditions on the solutions to the ray equations (11) to (la) at

the point where the rays reach the boundary to produce a reflected wave,

say' {t,+,u+} corresponding to the incident wave, say, {p_.,,_}. (See, for

example, [.9].

The reflected wave is still given by equations (6) with (16), but nmltiplied

by a constant reflection coefliciellt, say _v. The Eikenal S is obtained by

integrating (18) through the reflection.
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Thus, the pressureand velocity on the boundary E aregiven by

pa = ¢ (1 +/_) eiks (20)

and

_2q5 ik._
uc; = (s_ + T_s+) e (21)

12,2,c,

(recall that _." is a.ssumed t.o be zero at. _).

The usual iml_edance boundary condition for a locally-reacting surface

involves only the normal component of the velocity uc;, and therefore only

the normal component of the propagation vector s. This condition is usually

expressed in t.erlns of an impedance, say Z (which can, in general, be a

function of the frequency ,.,_), as

Z=p_2 pc; for xon._, .-
Uc;. fl

where fi denotes the unit normal to _Z. Moreover, the normal component of

s changes sign, i.e.

s_.fi=-s+.fi forxon x_2. (23)

Substituting this along with (21) into (22) yields the followhlg expression for

the reflection coefficient

R, - _ + 1 (2=1)
*/- 1'
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wherf'

"/- - (s_ • fi) C

where _ = Z/p,_c,_, is a normalized impedance.

7_, --+ 1 for a hard wall.

(25)

Notice that Z --+ oc and

On tile other hand, the tangential component of s, namely .sl, remains

unchanged by the reflection, and it therefore follows from (11) that

-_l = constant, (26)

which is equal to tile far-field value of this quantity for any ray that propa-

gates to infinity (which are the only ones we are interested in here). In this

region (where the mean flow is zero), the acoustic rays are straight lines and

are therefore given by

x = x" + H (cos 0.>:_,sin 0_. cos 0,_,, sin 0_, sin 0,_, ), (27)

where R can be taken as the distance between the source poinl an(1 the ob-

servation point, and 0,_. and 0,_ denote lhe far-field polar and circumferential

angles, respectively, shown in Figure 1.

It therefore follows from Eqs. ( l I ) to (la) and the Eikena.1 equation (18)

that [? = I, a,nd that

•_I = cos 0..,. (28)
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The Jacobian determinant, (17) becomes

0(0oo,%)
J = H 2 sin 0,_, 0 (p,, A)

and it, now follows fi'om (12), (14), and (28) that

_lr S (X ._-2,

-2
C s

(29)

(30)

Eliminating % between this and equation [15) shows that 0_, depends

only on #, and not, A, and that

(_.,)2 sinO_.,dOo_ (:31)
"_s3 -- Coc, -- -- sin tt dis

Inserting this into (16) and using (29) shows that

-+ 47r/7_, (1 -- )ls cos O;.:) (:32)

where we have used the ideal gas law to obtain this restllt and put,

R, = fi R_, (:la)
i=1

where tile R.i denote the individual reflection coefficients for each of the 'm

reflections that the ray undergoes before leaving the duct. Also, it follows

from (la), (t8) and (28) that

5' = (x, - ._,*) _os 0_, + ,%(x, lx?). (34)
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2.3 Application to nioving point source

As indicated in tile Introduction, the sound radiated by an actual turbulent

flow can be calculated ill terms of the pressure field p generated by a su-

perposition of point quadrupole sources moving downstream with the mean

flow. We therefore consider the source distribution

D 02
e-iW*t(_ (X -- Xt s --igor) Qij, (.'_,5)F - Dt O.viOxj

where l_ denotes the convection speed of the source whose strength is Qij.

The corresponding acoustic field can be calculated from tile fixed source

solution pa by superposing Fourier components and using the Green's for-

,,,ul_. ({._])

"-2re J -,._f 'c;(xly'_)e-i_(t-T) 02 - _'5(y _ il',.r)dydrd_'.
OxiSOx.,is e -- x t --

(36)

Integrating by parts to transfer the derivatives from the source term to the

(Ireen's function, and carrying out, the integrations with respect to y_ and 7-

gi yes

2rc l "_ - .__..
e i(_'-_'+_l(:_:fc'<-O 02 _1c;(x}x, _,w)dxt_d_.'. (37)

Oxi_Oxj

For clarity, we begin with the case whet'(' only a sitigle ray reaches the

ol)server. The result will then 1)e corrected for multiple ray effects in a,
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relatively obvious manner. Inserting equations (6), (28) and (34) into (37),

and using the fact that (at. lowest approximation) the partial derivatives

operate only on the fl'equency-dependent ternis in tile exponent, we ol)tain

I_= (1-._Ic°s0o¢,) e-i'_t O_i'i j/2rr {,_.. _ei(_-_°)[J"'/_'_'-t)

x 82 e_ I('1-_'--, "}':'*e_'+'%Jdrl. "d,_'.
Oz i_Oz.i "_

(38)

Then, cairrying out the integration, first with respect, to 3? 1

&function), and then with respect to _.,, shows that

* (to obtain a.

-(1 - 3lcosO_)c*,._rjQ,:j . _.', . (_,,,-o_O_+s0-e,_tt

P = (1 - Mc cos 0o_.) ks2qbec_l ............. -
(3.q)

where we have put M_ = Uc/c_, I% = w,/i:',_, and

COS 0oc,
0" 1 _

1 - M_- cos 0,_

- 1 ?)£'o

rri = 1 - 31_ cos0,_. 0zi *' for i = 2, 3.
(40)

Then it. follows flom equation (32) that

k2 IQ,a   jl r¢ dA I

[ (41)

in the far field where M = 0, which, except for some minor nola.tional

changes, and the inclusion of the reflection coefficient R., is the same as

equation (5.9) given in fief. [5]. The normalized wall impedance, 4, which

appears in this equation through the rettection coeificient. "R, must be eval-
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uated at the actual (or observation) frequency

= _/(t - M_cosO_), (42)

and not the source frequency ws-

It is convenient to allow the transverse orientation of the quadrupoles to

vary with source position. This amounts to changing the orientation of the

x s coordinate system or, equivalently, referencing the angle k to a different

angle, say' A0(xS). Then it follows from the results given in Ref. [5] that a2

and a3 are given explicitly by

w]lere

-q_ cos (A - Ao) -qs sin (A - Ao)
_2= ; _ra= , (43)

1 - M_ cos 0o_, 1 - M_ cos O_

1 - M cos 0,_,)2q = (c/_,_,)_
- cos 2 0<,. (44)

When nmltiple rays (which we individuate by a superscript in parenthe-

ses) reach the observer, the far-field pressure is given by the somewhat more

complicated formula

IPI" --+ " (45)
4 (1 -- 3lscosOvc,)2(1 -- a,l,-cosO,x,) 2'(47rR)2c_,

where * denotes the complex conjugate, and the dependence on the transverse
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sourcecoordinates%,0,, and the emission angle k enters through

Dijkl _ n,m=l_ O'i(n)_jln)o'k(rn)O'l(m)_f_(n)_(m)'kq __0"_(" ) _)/_(ml ei_(S0(,,)_S0(m) )

(46

where t, denotes the number of rays reaching the observer.

3 Reduction of Order of Ray Equations

Goldstein [5] introduced the two-dimensional ray distance S defined by (see

equation (2.19) of that reference),

dxt
(-_ - 1. (47)

It follows from equations (9), (13), (44) and (28) thai r is related to S by

dS

dT = q (4s}

Equations (13) can then be combined to obtain the second-order system

d dxt

_q-?_ = V,q, {49)

where Vt denotes the cross stream divergence. This is the same as equation

(2.2?,) of ref. [5], where it. is shown, by introducing lhe polar coordinates

0 = t.an -1 (w:_/'x2), v = @v.22 + .r82, (,5o)

NASA/TM--1999-209171 17



that it. can be reducedto the singlesecond-orderequation

1 d r2q Oq

I dO I 00' (51)

where

1 -- ,.2+ \de] '

which is to be solved subject to the initial conditions

(52)

d j,,

7"= r5 do 1"5cot. (._ - 05), at 0 = 05. (53)

Iuserting equations (13) and (48) into the boundary condition (23), using

(50) and taking 0 as the independent variable, shows that the appropriate

boundary condition for equation (51) is

L,/o ,,+ tan (O-/e) : _ L_t0

where we have put

---r-tan(c-,3)],

fl-{cos/Lsin/_}.

for x on _,

(54)

(55)

This boundary condition must be imposed on all rays reaching the cylindrical

surface containing the duct wall whenever
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where xl = x_(x2,x3) is the equation for the termination curve C. xa can be

calculated as a. function of 0 along the ray by inserting (28), (48), (50), and

(5:2) into (13) to obtain

d;F 1 [ 2

4 Application to Sound Radiated by Actual

Turbulent Flows

Equation (45) can be used to calculate the power spectral density of a, spec-

t.ral distribution of sources of band width A..,_ by l)utting Qi)Q*k_ equal to

(1- M_cosO_)kljij,qA_.,s (Ref. [10]). However, pressure spectra, are mea-

sured per unit observation fi'equency A_.,

_CJs
A_., = . (58)

1 - alc cos 0,:,:,'

(see Eq. (42)) and it, therefore follows that, tile directivity of the spectra at

constant source frequency ..,_ (due to a source at x s) is given by

4

1 k_ qJ,jk_D_y (59)
A_., I/2 _ (4_rR) 2-4 (1 AL cos 0<,) 2

Cc, _ --

This result can now be used to calculate the sound emitted 1)3' an actual

turl)ulent flow by assuming that the turbulent eddies behave like compac!
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soundsources,and using Lilley's eqnation to showthat the spectral source

strength q*iy is related to the fourth-order, two-point, time-delayedcorrela-

tion function of the turbulence

/¢iy(x s,(,_)= ,, ,,,, ,, ,,,,ttittjttl,.tlI - 11illj iik1gI, (60)

in the usual way by

= e _ Rim(x ,gl, r)d_dr, (61)

where the single prime indicates that the quantity is evaluated a,t the po-

sition and time (x"',t), the double prime indicates the position and time

(x',t + r),

_llld

= x _'' -- x _' -- ](:cr, (62)

x, ::,, ,:,,) , (:= L" l,_(z'_'+'" ,_ ,"

denotes the mean position of the source.

Since the sound, field is always produced by a distribution of sources

rather than by a single point source, the final result will involve an integral

of Eq. (59) (and consequently of Eq. (46)) over the transverse source coor-

dinates r, and 0_- Thell, since ,S'0('0 is a function of these coordinates, the
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contribution from the cross-couplingterms in (46) will be smaller than the

contribution of the m = _ l.ermsby a factor of (at. least) _U -1/2, which ill

a strict, asymptotic sense is negligible in the high-fl'equency limit. However,

the zero-mean-flow computations of Boyd, I_empton and Morfey [11] sug-

gest. that the asymptotic convergence may be relatively slow for sources close

q(,0 q,(")to the wall (which result in small values of ,-0 -'_0 in Eqn. (46)), and

that the interference effects may not be insignificant even at relatively high

frequencies particularly at small angles to the downstrealn axis where the

sound field in expected to be maximal. However, the turbulent flows, which

are of interest here, will probably introduce significant ra.ndom fluctuations

in the phases of the disturbances, which will tend to uncorrelate the pressure

fluctuations corresponding to different ray paths. We therefore feel that it. is

best to neglect the interference effects, which amounts to replacing Eq. (46)

with

Dijkl -= _ O'i(_O0"j(n)O'l,.ln)O'l (n) _(n)

2 O,_oo

.,=1 _ . (64)

Since the fourth-order correlation tensor is wwy difficult to measure ex-

perimentally, or even calculate nulnerically, it. is usual to assume that the

turbulence is quasi-normal, and, consequently, that li_i.iJ,.1can ])e expressed as
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the product of second-ordercorrelations ([12], [13])

R,jk_ = Ri_.Rj_ + RaRik. (65)

In order to simplify this further, Goldstein and Rosenbaum [14], Kerschen

[15], and, more recently, B&hara et al. [16] and I,ihavaran [17], assumed that

the turbulence is axisymnmtric about the direction of the mean flow. The

analysis given in Ref. [1] (see also [2]) then shows that

oi (75CrkO'l_ i.i_:l

+ ,a e Qijd6,dr, (66)

where we have dropped the superscript (7_) on the _ri, and

Qo =

(67)

are symmetric in their indices.
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5 Application to Round Duct

metric Mean Flow

with Axisym-

Goldstein [5] showed that Eqs. (51) - (53) can be solved analytically when

the mean flow is axisvmmetric. A similar procedure can be used to obtain

an analytical solution io the present problem, but it. is probably easier to

solve it numerically. However, it is important to notice that, in this case, the

resulting solution, whether obtained analytically or numerically, will depend

on A, 0 and 0._ (where O_ is the circumferential angle of the source point)

only in the combinations 0- 0, and A - d)_, since the coefficient q in Eq. (51)

is independent of 0, i.e., O appears only as an independent variable. This, in

particular, implies that A - 6_ is a function of 0,_. - <cos,r_ and 0_,. Moreover.

calculations of the ray trajectories for sources located within the nozzle show

that A is a discontinuous, multi-valued function of 0o_., due to the sudden

change of boundary conditions at the nozzle lip. This is illustrated in figure

2, which is a plot of 0._. vs. A for the indicated source location. Thus, even

though 0._. is necessarily a single-valued function of A, the tigm'e shows thai

the converse is certainly not true. It. follows that

sin p - -- do_
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= 2
n=l

= sin p _ cos q _ d_

d (,_(n) _ 08) dqS_ (68)
d_

for p,q = 0, 1,2,

since, for a given r, and 0.:<,, T¢_depends on _<, - _, only through ,_ - _.

The sum in Eq. (68) must be taken over all ,_(n) values corresponding to any

given value of eo,_., in order to account for all of the rays reaching a given

observation point.

If we now choose the reference angle ,_0 in Eq. (4a) to be equal to 08,

tile quadrnpole sources will have the same orientation relative to the radial

direction for all 0,, i.e. the quadrupole source distribution in Eq. (59) will be

axisvlmnetric when *ijkt is independent of 0.,. Then, since equations (4a),

(44), (64), and (68) show that the entire ¢b<, dependence in (59) is of the form

(68), it follows that the sound field ]Pt emitted by a ring of uncorrelated, equi-

strength quadrupole sources with radius r,, and the same orientation relative

to the radial direction, is independent of the circumferential observation angle

0,-<,, i.e. it is axisymmetric.

When R, = 1 (i.e. for a hard-walled duct), it follows fl'om equations (43),

(44), (66) and ((iN) that

,,=_-£ 2'_°_ ('') °'_('_,_` _)°'('_, q'_j_', " R"_' 20A"_',Oo...._Id°_
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For isotropicturbulence Q0 -- 7Q0, and itfollowsfrom Eqns. (43) and

(44) that Eq. (69) is h_depen(lentof 0,_,when M,_ = Me, This means that

the sound radiated by a ring source in a hard-walled duct. is ,lot only inde-

pendent of the mean velocity profile within the jet, but is also unaffected by

the presence of the duct when all rays reach the far field. Of course, this

result only applies when the phase cancelation between multiple ra.ys can be

neglected. Also, since r',dO_ is the element of arc length, the total sound

radiated by the ring source will be directly proportional to the radius r_.

5.1 Nmnerical results

Results for the directivity patterns due to a. ring source within a. round

duct were computed for a constant mean speed of sound, e = c,_,, and mean

Mach number profiles of the form

e--arb __ e -_t

= Mo , (7o)
-- (_--(I
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where Mo is the centerline Mach number and the parameters a and b are

used to control the profile shape.

'Tile source terms in Eq. (66) were evaluated using the relations given by

Khavaran [17] for a xisynmletric turbulence. The anisotropy is characterized

by the two parameters u._/u_ and L2/L1, where Ul2 and 'u_ are the streamwise

and transverse mean square turbulent velocities, respectively, and Lj and

L2 are the corresponding correlation lengths (see ref. [17]). Values for the

anisotropy parameters of u_/u 2 = 0.6 and L2/L_ = 0.5 were used in the

calculations.

Figure 3 shows the results for the far-field, one-third-octave directivity,

plotted at constant source fl'equency, for a ring source at r,s 0. "r- ' *: _OTO,Xl :

--2.0ro, where ro is the duct. radius, and a centerline Mach number of 1.;5

with a = 0.1, b -- 6, for a hard-walled duct and a soft-walled duct. of various

impedances.

For sufficiently small far-field polar angles outside the zone of silence, all

rays emanating flom the source reach the far field and, for the perfectly-

reflecting, hard-walled duct considered here, the duct has no effect on the

far-field sound. At far-field positions beginning ill the upstream quadranl

( i.e. 0,>: > re/2 ), however, some of the rays become t.ra.i_t_ed within the
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duct.,causingthe sound pressurelevels to be reducedat theseangles. Tile

hard-walled duct, therefore,only, effectsthe soundfield at sufficiently large

anglesto the downstreamaxis which, in fact, lie in the upstreamquadrant

as indicated in the figure. Sincethe number of rays reachingthe far field

rapidly' decreasesas0oo -+ rr, there is a sharp drop in tile far-field sound.

However, the soft-walled duct starts to effect the sound field as soon

as wall reflections begin. Since an increasing number of rays reflect (a.n

increasing number of times) off the walls as tile polar angle increases there

is a substantial decrease in tile far-field sound relative to the hard-wall case.

The wall impedances _ = (1,-1) and q" = (2,-1) are seen to reduce tile

peak noise level by nearly ;5 dB, relative to the hard wall case. The results

suggest that the magnitude and phase of the normalized wall impedance can

significantly effect the peak sound level, and a. detailed parameter study to

find the optimal vahle should be carried out.

Figures 4 and 5 show the effect, of the source position on the far-field

sound. The rays undergo fewer wall reflections when the source is closer to

the nozzle exit (Fig. 4), and the acoustic liner therefore provides less noise

suppression. When the source is closer to the duct. centerline (Fig. 5), all

rays exit the duct without reflecting off the wall when the far-field polar
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angle is sufficiently small, and the acousticliner hasno effect oil tile sound

field. Wall reflectionsstart to occur whenthe polar angle is increased,and

the liner reducesthe far-field sound,but only by a relatively small amount-

againdue to fewerwall reflections.

Figure 6 illustrates the effect of centerline Mach number on tile liner

effectiveness. At tile subsonicMach number (M(0) = 0.9) for which this

result wasobtained, a wall impedanceof ( = (1,-1) again reducestile peak

sound pressurelevel by about 5dB, but producesa much larger reduction

than tile previous (supersonic)caseat large upstreamangles.

6 Conclusions and future work

It. was shown that the high-frequency Lilley's-equation solution devel-

ot)ed in tlef. [5] for a. doubly-infinite, tra.nsversely-sheared mean flow also

applies to the noise generated internally within a nozzle, provided approi)ri-

ate boundary conditions are imposed on the ray trajectories a.t the surface

of the duct and a suitable wall impedance factor is included.

By assuming the turbulence to be axisynunetric about the mean flow di-

recl.ion, a. silnl)litied expression for the far-field sound radiated by a turbulent

NASA/TM-- 1999-209171 28



flow within the nozzlewasderived.

Tile analysiswas applied to the caseof a round duct with an axisym-

metric meanflow, and it. was shownthat a hard-walled duct. hasno effect

oil the far-field soundradiated at polar anglessufticiently closethe duct axis

(but.outside the zoneof silence).The numerical results show that the duct

cutsoff someof the raysfor polar anglesin the upstreamquadrant, and that

acousticliners cansignificantly reducethe far-field soundbut their effective-

hessdependsupon the wall impedance,sourceposition and meanflow field.

The a.nalysiscan be used to carry out detailed parametric studies to find the

optimal wall impedance_ acoustic source distributions, mean profile shape

and nozzle geometry for a given application.

The ray acoustics solution has the advantage of being applicable to nozzles

of any shape and any mean velocity profile (see Fig. 1). The high-speed

civil transport was expected to use a rectangular mixer-ejector nozzle with

a very complex mean velocity profile and acoustically treated walls. Future

work will eva.luate the ray acoustics solution for this geometry and make

comparisons with some recent, test. data.

This paper only considers the sound produced by the first, source term in

Eq. (4) - the so-called "self-noise" term. While this term is asymptotically
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large comparedwith the second(or 'shear-noise')term in Eq. (4) in the

high- frequency limit, it may be necessaryto include the latter in order to

obtain agreementwith experimental results,particularly in the downstream

quadrant (see,for example,Khavaran [17]).

This paperalso does not addresstile diffracted radiation produced by

acousticravs striking tile duct lip. It too is asymptotically small compared

with the direct and reflectedsound(Pierce[9]), but canstill beof significance

at the upstream polar angles,wheremost of tile direct or reflectedsoundis

cut off by tile duct. This is currently being investigatedby Wundrow and

Goldstein [18],who plan to developa computational algorithm incorporating

the diffraction effects into the presentanalysis.

The authors would like to thank Dr. JamesBridges of NASA Glenn

ResearchCenter for providing values of the wall impedance and Dr. Abbas

l{havaran of Dynacs Engineering Co. for information on the mixer-ejector

nozzle configuration and flow field.
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Fig l-a: Flow configuration.
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Figure l-b: Example of more complex configuration to which analysis applies.
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Figure 2: Far-field cirumferential angle vs. initial cirumferential angle for Mach

number profile (70) with a = 0.1,b = 6, M(0) = 0.9 and source position r, =

0.75r(_, xl "_= -().Sr_), and fl_ = 3rr/8.
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Figure 3: Far-field one-third-octave directivity plotted al constant source fre-

quency for Mach number profile (70) with a = 0.1,b = 6, M(O) = 1.5, and
source posit.ion r_ = 0.75rtj, a_l_ = -2.0r0 for hard-wall duct (solid) and soft-

wall duct with ( = (1,-1) (dashed), (1/2,-1) (dotted), (2,-1)(dot-dashed),

(1, -2) (dot-dol-dashed).
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Figure 4: Far-field Olw-third-octave directivity plotted at, constant source fre-

quency for Math mnnber profile (70) with a = 0.1, b = 6, :tl(0) = 1.5, and source

position r, = 0.75r0, ,vl" = -0.5r0 for hard-wall duct, (solid) and soft-wall duct,
with t," = (1,-1) (dashed).
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Figure 5: Far-field one-third-octave directivity plotted at constant source fre-

quency for Mach number profile (70) with a = 0.1,b = 6, M(0) = 1.5, and

source position r, = 0.5r0, xf' = --0.St 0 for hard-wall duct (solid) and soft-wall

duct with C = (1,-1) (dashed).
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Figure 6: Far-field one-third-octave directivity plotted at. constant source fre-

quency for Mach number profile (70) with a = 0.1,b = 6, M(0) = 0.9, and

source posit.ion r, = 0.5v0, ah "_= -2.01'0 for hard-wall duct. (solid) and soft-wall

ducl with ( = ( 1, - 1) (dashed).
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